Today: Thursday 17 June 2021 , 4:23 pm


advertisment
search


Reziprokes Gitter

Last updated 23 Dag , 22 uur 8 Keer bekeken

Advertisement
In this page talks about ( Reziprokes Gitter ) It was sent to us on 24/05/2021 and was presented on 24/05/2021 and the last update on this page on 24/05/2021

Jouw commentaar


Voer code in
 
Das reziproke Gitter (lateinisch reciprocus ‚aufeinander bezüglich‘, ‚wechselseitig‘) ist eine Konstruktion der Kristallographie und Festkörperphysik.
In der Kristallographie beschreibt das reziproke Gitter die Röntgen-, Elektronen- und Neutronenbeugung an Kristallen, z. B. in der Laue-Bedingung. Das Röntgen-Beugungsbild eines Kristalls ist im Gegensatz zum mikroskopischen Bild nicht das direkte Bild des Kristallgitters selbst, sondern das Bild des reziproken Gitters, das dem Kristallgitter zugeordnet ist.Kittel, Einführung in die Festkörperphysik, Oldenbourg 1980, S. 65.
In der Festkörperphysik wird das reziproke Gitter mit leicht veränderter Definition verwendet (Faktor 2 \pi) und als reziproker Raum bezeichnet. Als zugehöriger Fourierraum des Kristallgitters kommt ihm eine herausragende Bedeutung zu. Im Gegensatz zu den Vektoren des Kristallgitters haben die Vektoren des reziproken Gitters die Dimension einer inversen Länge.

Definitionen

Ein 3-dimensionales Punktgitter wird durch drei Basisvektoren \vec a_1, \vec a_2 und \vec a_3 beschrieben. Dieses Gitter wird auch reales oder direktes Gitter genannt. Die Basisvektoren \vec b_1, \vec b_2 und \vec b_3 des zu diesem Gitter reziproken Gitters ergeben sich aus den Gleichungen:
{ Reales Gitter
! colspan="2" Reziprokes Gitter
-
Bezeichnung
style="text-align:center" Abk.
Bezeichnung
style="text-align:center" Abk.
-
Primitiv
style="text-align:center" P
Primitiv
style="text-align:center" P
-
Basiszentriert
(Einseitig flächenzentriert)
style="text-align:center" A, B, C
Basiszentriert
(Einseitig flächenzentriert)
style="text-align:center" A, B, C
-
Flächenzentriert
(Allseitig flächenzentriert)
style="text-align:center" F
Innenzentriert
(Raumzentriert)
style="text-align:center" I
-
Innenzentriert
(Raumzentriert)
style="text-align:center" I
Flächenzentriert
(Allseitig flächenzentriert)
style="text-align:center" F
-

Verwendung in der Kristallographie

Zusammenhang mit den Millerschen Indizes

Ein Vektor (h,k,l) des reziproken Raums steht senkrecht auf der Schar von Netzebenen mit den Millerschen Indizes (hkl). Die Länge des Vektors ist gleich dem Reziproken des Abstandes der Netzebenen.
Daraus folgt, dass im reziproken Gitter auch die Punkte, deren Koordinaten ein gemeinsames Vielfaches besitzen, eine Bedeutung haben: die mit (100) und (200) bezeichneten Scharen von Netzebenen liegen parallel zueinander, die Netzebenen der Schar (200) haben aber nur halb so großen Abstand wie die der Schar (100).

Bragg-Gleichung und Laue-Bedingung

Die Bragg-Gleichung liefert einen Zusammenhang zwischen dem Netzebenenabstand d_{hkl und dem Beugungswinkel \vartheta. Sie gilt nur, wenn der einfallende und der gestreute Strahl symmetrisch zur „reflektierenden“ Netzebenenschar (h,k,l) verlaufen, und lautet:
n \lambda = 2d_{hkl \, \sin(\vartheta)
In dieser Form liefert sie keine Aussagen über die Richtungen der Netzebenen und der einfallenden und gestreuten Welle zueinander.
Beschreibt man die einfallende Welle mit \vec k_0 = \frac{\vec e_0{\lambda und die gestreute Welle mit \vec k_s = \frac{\vec e_s{\lambda , so erhält man die zur Bragg-Gleichung äquivalente Laue-Bedingung:
\vec k = \vec k_s - \vec k_0 = \vec{G_{h,k,l
Dabei ist
  • \vec k der Beugungsvektor und
  • \vec {G_{h,k,l der Vektor (h,k,l) des reziproken Gitters.
Allgemein bedeutet diese Gleichung: ein Röntgenstrahl wird genau dann gestreut, wenn der Beugungsvektor \vec k gleich einem reziproken Gittervektor ist. Dieser Zusammenhang wird mit der Ewaldkugel anschaulich dargestellt.

Historisches

Das polare Gitter („réseau polaire“) als Vorläufer des reziproken Gitters wurde bereits von Auguste Bravais im Rahmen seiner Arbeit über Punktgitter behandelt.Auguste Bravais: Mémoire sur les systèmes formés par des points distribués régulièrement sur un plan ou dans l’éspace. In: Journal de l’École Polytechnique, Bd. 19 (1850), S. 1–128 Definition des polaren Gitters IUCr (englisch).
Josiah Willard Gibbs führte 1881 den Begriff des reziproken Systems („reciprocal system“) als rein mathematische Konstruktion in seinem Buch Vector AnalysisVector Analysis in der englischsprachigen Wikipedia ein.Josiah Willard Gibbs: Elements of Vector Analysis arranged for the Use of Students in Physics. Morehouse & Taylor, New Haven CT 1881. Seine Definition ist identisch mit der oben angegebenen kristallographischen. Paul Peter Ewald war der erste, der dieses Gitter zur Beschreibung von Röntgenreflexen einsetzte.Paul Peter Ewald: Zur Theorie der Interferenzen der Röntgenstrahlen in Kristallen. In: Physikalische Zeitschrift, Bd. 14 (1913), S. 465–472. Danach baute er die Theorie weiter aus.Paul Peter Ewald: Das reziproke Gitter in der Strukturtheorie. In: Zeitschrift für Kristallographie. International Journal for structural, physical and chemical aspects of crystalline materials, Bd. 56 (1921), S. 129–156 . Aber erst aufgrund einer Arbeit von John Desmond BernalJohn Desmond Bernal: On the interpretation of x-ray, single crystal, rotation photographs. In: Proceedings of the Royal Society of London / Serie A, Bd. 113 (1926), Nr. 763, S. 117–160 . wurde diese Konstruktion zur Beschreibung von Braggreflexen allgemein bekannt und etablierte sich.

Verwendung in der Festkörperphysik

In diesem Abschnitt werden die Wellenvektoren \vec k = \frac {2\pi{\lambda \vec e wieder grundsätzlich mit einem Faktor 2 \pi definiert und das Gleiche gilt für die Konventionen des reziproken Gitters.
Allgemein gilt, dass eine gitterperiodische Funktion:
n (\vec r +{\vec a_i) = n(\vec r)
mit den Gittervektoren {\vec a_i eine Fourierzerlegung mit Wellenvektoren als Fourierkomponenten hat, die aus den Vektoren {\vec G_j des reziproken Gitters bestehen:Sowohl das Symbol G als auch K ist für reziproke Gittervektoren gebräuchlich. Hier wird G verwendet.
n (\vec r) = \sum_{{\vec G_j n_{{\vec G_j \exp {(\mathrm{i {\vec G_j \vec r)
da wegen \vec G_i \vec a_j = 2 \pi \delta_{i j\, gilt:
\exp {(\mathrm{i \vec G_i \vec a_j) =1
Dieser von den Vektoren des reziproken Gitters aufgespannte Raum der Wellenvektoren wird auch reziproker Raum genannt, häufig wird aber auch synonym die Bezeichnung reziprokes Gitter verwendet.
Als Fourierraum des Gitters kommt dem reziproken Raum eine fundamentale Bedeutung in der Festkörperphysik zu. Die Dimension der Vektoren des reziproken Raums ist die einer umgekehrten Länge. Die oben beschriebene Beugung von Röntgenstrahlen mit der Laue-Bedingung \vec{k = \vec{k' + \vec{G (mit den Wellenvektoren k, k' des Photons vor und nach der Streuung und dem reziproken Gittervektor G) liefert ein direktes Bild des reziproken Gitters.

Bloch-Funktion

Ein weiteres Beispiel für die Bedeutung des reziproken Raums bzw. Gitters ist die Bloch-Funktion und der Satz von Bloch, dass die Lösungen der Schrödingergleichung im periodischen Potential des Gitters als Produkt einer ebenen Welle und einer gitterperiodischen Funktion u_\vec k (\vec r) geschrieben werden können:
\psi(\vec r) = \mathrm{e^{\mathrm{i\vec k\cdot\vec r \cdot u_\vec k(\vec r)
Da die Funktion u_\vec k(\vec r) gitterperiodisch ist, kann sie als Fouriersumme über Vektoren des reziproken Gitters geschrieben werden.

Wechselwirkung von Quasiteilchen

Eine weitere Anwendung ist die Wechselwirkung von Quasiteilchen wie quantisierten Gitterschwingungen (Phononen). Diese besitzen einen Wellenvektor \vec k und einen Impuls \hbar \vec k . Streut zum Beispiel ein Elektron mit Wellenvektor \vec k mit einem Phonon mit Wellenvektor \vec q , so gilt folgende Auswahlregel:
\vec{k + \vec{q = \vec{k' + \vec{q' + \vec{G
wobei \vec G ein Vektor des reziproken Gitter ist.
Die Impulserhaltung gilt hier also bis auf Addition eines Vektors des reziproken Gitters, und die betrachteten Impulse heißen auch Quasi- oder Kristallimpulse.
Da im Gitter der Wellenvektor eines Quasiteilchens wie eines Phonons nur bis auf Vektoren des reziproken Gitters festgelegt wird, genügt es, die Wellenvektoren in der ersten Brillouin-Zone zu betrachten. Sie ist die Wigner-Seitz-Zelle des reziproken Gitters. In einer Dimension entspricht die erste Brillouinzone Wellenvektoren k < \frac{\pi{a . Hat ein Phonon einen größeren Wellenvektor, so kann von ihm so oft ein Vektor \left( \frac {2\pi{a \right) des reziproken Gitters abgezogen werden, bis der Wellenvektor im Bereich \pm \frac{\pi{a liegt, ohne dass sich an der Physik etwas ändert.

Literatur

  • Dorothy G. Bell: Group Theory and Crystall Lattices. Review of Modern Physics, Volume 26, Number 3, S. 311, 1954.
  • Charles Kittel: Einführung in die Festkörperphysik 10. Auflage. Oldenbourg Verlag, München 1993, ISBN 3-486-22716-5.
  • Ch. Kittel: Quantentheorie der Festkörper. 2. Auflage. Oldenbourg, München 1988, ISBN 3-486-20748-2.
  • Neil W. Ashcroft, N. David Mermin: Festkörperphysik. 2. Auflage. Oldenbourg, München 2005, ISBN 3-486-57720-4.
  • Konrad Kopitzki, Peter Herzog: Einführung in die Festkörperphysik. 6. Auflage. Teubner, Wiesbaden 2007, ISBN 978-3-8351-0144-9.
  • Will Kleber: Einführung in die Kristallographie. 19. Aufl. Oldenbourg Wissenschaftsverlag, München 2010, ISBN 978-3-486-59075-3 (zusammen mit Hans-Joachim Bautsch und Joachim Bohm).
  • Martin J. Buerger: Kristallographie („Contemporary crystallography“, 1975). Walter de Gruyter, Berlin 1977, ISBN 3-11-004286-X.

Weblinks

  • Vector Analysis
  • Das reziproke Gitter IUCr (englisch)

Einzelnachweise


Kategorie:Kristallographie
 
Opmerkingen

Er zijn nog geen reacties




laatst gezien
die meisten Besuche